(0)^2=10+-4y^2

Simple and best practice solution for (0)^2=10+-4y^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (0)^2=10+-4y^2 equation:



(0)^2=10+-4y^2
We move all terms to the left:
(0)^2-(10+-4y^2)=0
We add all the numbers together, and all the variables
-(10+-4y^2)=0
We use the square of the difference formula
-(10-4y^2)=0
We get rid of parentheses
4y^2-10=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $

See similar equations:

| 5(2x+4)=6 | | 2x=11+4-x | | x^2=10+-4(0)^2 | | 115=k(25) | | 4+7p=-38 | | r/(-7/9=6/6 | | 2(4x-2)=-2x-14 | | 12x-2(3x-5)=5x+1 | | 3(x-5)-4x=27-5x | | 58-7w=23 | | 7.5+1.2x=85.7x | | 2t-6=-30 | | 6a+5=32 | | 75m=4.60 | | 1.5n+4=3.5(n-4) | | -1x+x1.2x=78.2 | | -4x=18+x | | 7.5+x1.2x=x+85.7 | | 2x(6x+12)=288 | | 3x-42=2(x-13) | | 6(1-4x)=30-6x | | 7x+27=79 | | 5x+6/6=2x-2 | | −7x−13=8 | | 40h=240 | | -3(x+7)=-15 | | m^2+7m+17=5 | | 57+8x=169-6x | | 2/3y-3/2=8/7 | | 15=5/2w | | 5(2x-5)=2x+47 | | w/5+5=10 |

Equations solver categories